INL/EXT-12-25580

Towards a Supported
Common NEAMS
Software Stack

Cormac Garvey

April 2012

% The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

| daho National
Laboratory



INL/EXT-12-25580

Towards a Supported Common NEAMS Software
Stack

Cormac Garvey

April 2012

Idaho National Laboratory
Center for Advanced Modeling and Simulation
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for
NEAMS
and for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



Towards a supported common NEAMS
software stack

Cormac Garvey
Center for Advanced Modeling and Simulation
Idaho National Laboratory

Introduction

The NEAMS software development efforts benefits from the reuse of existing high
quality third party libraries (TPL), which have resulted from numerous years of open-
source community development and previous DOE investments. Each NEAMS code is
dependent on a specific collection of TPLs, because they often include layered
interdependencies, we call such a collection of TPLs a software stack. A TPL stack
provides key functionality such as access to numerical solvers, geometric modeling,
mesh generation and parallel I/0. The following third party software stack related
activities are currently undertaken by each NEAMS code group.

» Third party software stack needs to be built, installed and tested before any work
on or use of a NEAMS code can begin.

= Each time a NEAMS code is moved to a new HPC resource, the third party software
stack needs to be built/installed /tested. Each HPC resource may have a different
software environment complicating matters.

» As bugs are fixed and features are added to TPLs (e.g. cutting-edge numerical
algorithms for the latest HPC hardware), they need to be updated regularly.
Quality assurance tests for NEAMS codes need to be re-run to verify the new TPL
did not break anything. The API for some TPL’s are not backward compatible and
therefore break the NEAMS simulation codes, this can be a time consuming task to
trouble-shoot/correct this problem.

= A NEAMS code may uncover a critical bug in a TPL. NEAMS code developers may
need to spend a considerable amount of time communicating with the TPL
developers to have the software bug fixed or establish a sufficient temporary
work-around.

= Multiple versions of TPL stacks need to be maintained corresponding to different
compilers, different compiler options and different MPI libraries.

All of the above third party software stack tasks take up considerable time for each

NEAMS code team and taking time away from developing the NEAMS IPSC Simulation

codes.

In this report we propose a more efficient and cost-effective approach to handling the
NEAMS third party software stack requirements. Initially, we focus on the NEAMS
FUEL and Reactors codes, but the principles can be applied to other programs like



CASL. A centrally maintained common NEAMS third party software stack has the
following advantages.

= The NEAMS code teams can focus all their time on developing their respective
simulation code.

* Common TPL requirements across NEAMS code groups can be identified and
managed with improved efficiency by eliminating redundancy.

= All leadership class HPC resources will have an identical developer and user
environments with all the required TPL’s already installed and tested,
eliminating the effort needed to port to new HPC systems.

* Third party software stack will be more reliable because the it will be actively
maintained and upgraded on a regular basis.

= Asthe NEAMS IPSC’s mature, a detailed performance analysis can be
undertaken to tune the software stack to deliver optimal performance.

» TPL stack configurations supporting different qualities of service can be
independently installed and maintained. For example, a configuration
maximizing debug features can be installed for NEAMS code developers while
another maximizing performance can be installed for NEAMS code users.

The NEAMS IPSC simulation codes are still being actively developed and improved. So,
in the short-term what is required is a stable, reliable and consistent third party
software stack environment, which will allow the NEAMS code developers to
efficiently develop and refine their simulation codes.

Based on the needs outlined above, a third party software stack will be provided on all
NEAMS HPC resources based on the GNU compiler suite (gcc, g++ and gfortran) (later
the tuned third-party software stack may use a different compiler, depending on the
performance analysis.). The GNU compiler suite seems like a natural choice, it's a free
open source compiler, available on all HPC systems and most TPL’s support it.

In this report we will summarize the key NEAMS Fuel and Reactor simulation codes
and identify what TPL’s they are currently are dependent on. Then we will propose a
common NEAMS third party software stack, describe its basic structure and outline its
implementation plan.

MOOSE? (Gaston, Newman and Hansen)/BISON (Newman,

Hansen and Gaston)/ Marmot (Tonks, Hansen and Gaston)

A Key component of several NEAMS Fuel codes is the BISON application, which can
simulate the physical properties of individual nuclear fuel pellets of a typical light
water reactor over the entire lifespan of those fuel elements. A wide range of
interesting physical phenomena from reactor startup through latter stages of fuel
burnup can be simulated. Extensive studies of thermomechanical behavior of reactor
fuel pellets have been performed with the BISON code, including swelling due to
thermal expansion and oxygen diffusion, material cracking due to strain, nonlinear

1 Consortium for Advanced modeling and Simulation of Light water reactors.
2 Multiphysics Object Oriented Simulation Environment



mechanics, and lower-length scale coupling. Bison is an application built on the
MOOSE common framework approach. Marmot, which likewise is built on MOOSE,
provides the lower-length scale mesoscale simulations to compute properties needed
by the continuum-scale solution process.

Figure 1 lists the current MOOSE/BISON third party software stack requirements.

Moose/Bison/Marmot Third Party Libraries requirements

MVAPICH2 1.6
PETSc 3.1-p8 (Balay, Brown and Buschelman)
hypre 2.7b (Falgout, Kolev and Schroder)
BLAS (Dongarra)
LAPACK 3.1 (LAPACK web page)
TBB (Threading Building Blocks)

Figure 1 NEAMS FUEL IPSC (Moose/Bison/Marmot) third party library requirements.

AMP? (Clarno)/FUEL

The AMP nuclear Fuel performance code is targeted for the design, evaluation,
uncertainty quantification, and optimization of coupled-physics nuclear
fuel/assembly simulations. It includes thermo-mechanics, for fuel performance,
radiation transport and depletion (from SCALE), and single channel, one-dimensional
flow. The AMP/FUEL code requires the third party software outlined in figure 2.

Amp/Fuel/Libmesh Third Party Library requirements

CMAKE 2.8.6 or higher (CMAKE web page)
MPICH2 1.3.2 (MPICH2 web page)
HDF5 1.8.7 (HDF5 web page.)
Hypre 2.4.0b
Silo 4.7.2 (Silo web page.)
SUNDIALS 2.4.0 (Sundials web page)
Trilinos 10.2.* (Trilinos web page)

Figure 2 NEAMS FUEL (AMP/FUEL) Third-Party Library requirements.

3 Advanced Multi-Physics



NEK5000 (Fischer, Lottes and Kerkemeier), MOAB* (Tautges,

MOAB) & CGMA?® (Tautges, CGMA)

Nek5000 is an open-source (GPL) highly parallel incompressible computational fluid
dynamics solver based on the spectral element method. It is a key component of
Argonne’s SHARP project with a current emphasis on modeling coupled neutronics
and thermal-hydraulics.

MOAB is a component for representing and evaluating mesh data. MOAB can store
structured and unstructured meshes, consisting of elements from the finite element
method plus other element shapes such as general polygons and polyhedral.

CGMA is a code library, which provides geometry functionality used for mesh
generation and other applications. This functionality includes that commonly found in
solid modeling engines, like geometry creation, query and modification; CGMA also
includes geometry decomposition tools and support for shared material interfaces.
The NEK5000, MOAB and CGMA third party software requirements are presented in
figure 3.

NEK5000/MOAB/CGMA Third Party Library requirements
HDF5 1.8.3

Zoltan (Zoltan web page) (optional)
METIS (Karypis) (optional)
BLAS
NetCDF 4.1.1 (netCDF web page)

Figure 3 NEAMS Reactors IPSC (NEK5000/MOAB/CGMA) third party library requirements.

Unification of NEAMS FUEL and Reactor TPL stack requirements

One of the advantages of centrally maintaining and deploying a NEAMS TPL stack is
that common TPL'’s can be identified and we can start the process of simplifying and
unifying NEAMS TPL requirements. From a stability and consistency point of view it is
also advisable to include the gcc compiler suite used in the third party software stack
(the latest gcc version which does not break any of the NEAMS IPSC builds). This is
especially important as the third party software stack is deployed to other HPC
resources, eliminating possible errors due to gcc compiler version differences
between HPC resources.

The second area in which there appears to be some flexibility in TPL choice is in the
MPI library selection. All NEAMS codes require an MPI library, some specify which
type and version, but all NEAMS codes will run correctly as long as a stable and

4 A Mesh-Oriented datABase
5> Common Geometry Module, Argonne.



compliant (with MPI2 standards (Message Passing Interface Forum. MPI2: Extensions
to the Message-Passing Interface.)) MPI library is used. We propose that the latest
stable MVAPICH2 (Panda) MPI implementation be used and included in the NEAMS
third party software stack.

There is also overlap with PETSc, hypre and HDF5 among the NEAMS code teams.
There are version number differences between the NEAMS IPSC'’s, so some work will
be required to standardize these libraries. The current proposed complete NEAMS
Fuel and Reactor third party software stack is highlighted in figure 4, some of the
library version numbers have not been determined yet, the latest version which
works with all NEAMS IPSC’s will be chosen.

NEAMS Fuel and Reactor IPSC Third party software stack \

GCC 4.6.1 or higher
MVAPICH2 1.7 or higher
CMAKE 2.8.6 or higher
PETSc
hypre
Trilinos 10.6.2 or higher
SUNDIALS 2.4.0 or higher
HDF5
NetCDF 4.1.1 or higher
BLAS
LAPACK 3.1 or higher
Silo 4.7.2 or higher
Zoltan
METIS
TBB

Figure 4 Proposed supported/maintained NEAMS Fuel and Reactor IPSC third party software stack.

gcc compilers

Figure 5 Structure of Common NEAMS software stack.



Structure of NEAMS Fuel and Reactor IPSC TPL stack

Implementing the NEAMS Fuel and Reactor IPSC TPL stack on a number of different
HPC resources have many challenges.
= Access privileges will vary from one HPC environment to the next, which will
limit what can be done on each system.
= Some of the NEAMS IPSC codes have export control restrictions and so these
codes will need to have the appropriate protections, limiting access.
One way the NEAMS third party software stack can be implemented consistently on
all NEAMS HPC resources is by setting up appropriate NEAMS work areas or project
groups and controlling access to certain directories with the appropriate access
permissions set. Figure 5 outlines the structure of the proposed NEAMS Fuel and
Reactor IPSC third party software stack environment. For example the NEAMS, Fuel,
Reactors, Utilities and TPL directories will be locked-down to the NEAMS group only
and each IPSC (directory MOOSE, AMP, NEK5000, MOAB and LASSO) will have their
own group access privileges. It is also important that each TPL have a debug version
which will help track down software bugs.

Linux environment modules (Furlani) will be developed (defining TPL locations and
setting appropriate environmental variables) so that each NEAMS code group can
easily and conveniently bring the NEAMS TPL into their environment in a consistent
manner, no matter what HPC resource they are using.

Figure 6 Directory structure of NEAMS supported TPL stack, FUEL and REACTORS IPSC's work areas.



Cost of TPL stack maintenance and deployment service

As already mentioned in this report, maintaining a stable and up to date TPL stack can
be quite time consuming for each NEAMS code team and take away a considerable
portion of their time from developing the simulation code. There are also
considerable inefficiencies in each NEAMS code team maintaining its own TPL stack
(often building TPL’s which have already been built and vetted by other [PSC’s). A
more efficient way of dealing with the NEAMS TPL stack requirements is to have them
maintained by a single central body (possibly the NEAMS/ECT). By unifying as much
as possible the NEAMS TPL stack requirements and automating some of the
building/installing/deploying tasks, we estimate that the cost for this ongoing NEAMS
common software stack service would be about 1.0 FTE (excluding deploying on other
NEAMS HPC resources).

Conclusion

The NEAMS Fuel and Reactor IPSC’s code is dependent on a complex third party
software stack. Currently, each IPSC spends a considerable amount of time and effort
maintaining their own TPL stack. Centralized maintenance of a common NEAMS
software stack can improve efficiency and reduce duplicate efforts. We propose that
the NEAMS/ECT take responsibility for the NEAMS IPSC TPL stack building, installing,
testing, integrating and deploying it on all NEAMS HPC resources. The cost to the
NEAMS program for this TPL maintenance service is quite reasonable, only 1.0 FTE,

considerably less time than the combined time currently devoted to this task by all
NEAMS IPSC’s.

The next phase in this effort will be to implement the proposed common third party
software stack at the INL HPC resources and then deploy it to all NEAMS HPC
resources.

Works Cited

1. Balay, Satish, et al. PETSc Web Page. 2011. <http://www.mcs.anl.gov/petsc>.

2. Clarno, Kevin. AMP Nuclear Fuel Performance. 2010.
<http://neptune.ornl.gov/wiki/index.php/AMP_Nuclear_Fuel_Performance>.

3. CMAKE web page. <http://www.cmake.org>.

4. Dongarra, J. "Basic Linear Algebra Subprograms Technical Forum Standard."
International Journal of High Performance Applications and Supercomputing
16 (2002): 1-111.




5. Falgout, Rob, et al. hypre web page. 2011.
<https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html>.

6. Fischer, Paul F.,, James W. Lottes and Stefan G. Kerkemeier. nek5000. 2008.
<http://nek5000.mcs.anl.gov>.

7. Furlani, John L. "Modules: Providing a Flexible User Environment."
Proceedings of the Fifth Large Installation Systems Administration Conference.
San Diego, 1991. 141-152.

8. Gaston, D., et al. "MOOSE: A parallel computational framework for coupled
systems of nonlinear equations.”" 2009.

9. HDFS5 web page. 2011. <http://www.hdfgroup.org/HDF5>.

10. Karypis, George. METIS web page. 2011.
<http://glaros.dtc.umn.edu/gkhome/metis/metis/overview>.

11. LAPACK web page. 2012. <http://www.netlib.org/LAPACK>.

12. Message Passing Interface Forum. MPI2: Extensions to the Message-Passing
Interface. 1997. <http://www.mpi-formum.org>.

13. MPICHZ web page. 2012.
<http://www.mcs.anl.gov/research/projects/mpich2>.

14. netCDF web page. 2012. <http://www.unidata.ucar.edu/software/netcdf>.

15. Newman, C., G. Hansen and D. Gaston. "Three dimensional coupled simulation
of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods."
Journal of Nuclear Materials, 2009.

16. Panda, Dhabaleswar K. MVAPICHZ2. <http://mvapich2.cse.ohio-state.edu>.

17. Silo web page. 2012. <https://wci.llnl.gov/codes/silo>.

18. Sundials web page.
<https://computational.llnl.gov/casc/sundials/main.html>.

19. Tautges, Tim. CGMA. 2010.
<http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM>.

20.—. MOAB. 2010. <http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB>.

21. Threading Building Blocks. 2012. <http://threadingbuildingblocks.org>.

22.Tonks, Michael, et al. "Fully-coupled Engineering and Mesoscale Simulations of
Thermal Conductivity in UO2 Fuel using and Implicit Multiscale approach.”
Journal of Physics 180.1 (2009).

23. Trilinos web page. 2012. <http://trilinos.sandia.gov>.

24. Zoltan web page. 2010. <http://www.cs.sandia.gov/Zoltan>.




